MS and HS Algebra for Students Struggling in Math

> MTSS Conference

> > Presented by: Brad Witzel, Ph.D. Winthrop University witzelb@winthrop.edu

In a game, exactly six inverted cups stand side by side in a straight line, and each has exactly one ball hidden under it. The cups are numbered consecutively 1 through 6. Each of the balls is painted a single solid color. The colors of the balls are green, Middle and High School Algebra for magenta, orange, purpose, red and yellow. The balls have been hidden under the Students Struggling in Math cups in a manner that conforms to the following conditions: The purple ball must be hidden under a lower-numbered cup than the orange ball. The red ball must be hidden under a cup immediately adjacent to the cup under which the magenta ball is hidden. MTSS The green ball must be hidden under cup 5. $\frac{1}{2}$ day 1. Which of the following could be the colors of the balls under the cups, in order from 1 through 6? (A) Green, yellow, magenta, red, purple, orange Bradley Witzel, Ph.D. (B) Magenta, green, purple, red, orange ,yellow (C) Magenta, red, purple, yellow, green, orange Winthrop University (D) Orange, yellow, red, magenta, green, purple witzelb@winthrop.edu (E) Red, purple, magenta, yellow, green, orange Twitter @BradWitzel **2.**If the magenta ball is under cup 4, the red ball must be under cup (A) 1 (B) 2 (C) 3 (D) 5 (E) 6

Nationally, what do algebra teachers say? (NMP, 2008) 743 algebra teachers in 310 schools nationally responded to a survey on algebra instruction and student learning in 2007.

Findings:

- The teachers generally rated their students' background preparation for Algebra I as weak. The three skill areas in which teachers reported their students have the poorest preparation are rational numbers, word problems, and study habits
- Regarding the best means of preparing students, 578 suggested a greater focus on mastery of elementary mathematical concepts and skills
- Teachers were less excited about how current textbook approaches meet the needs of diverse student populations

For Today

- Reviewing SBAC Algebra questions
- Effort and achievement
- Build from arithmetic and teach the details
- Instructional Review
 - Explicit Instruction
 - CRA
- Provide ample opportunities to learn

C	8 th grade - expression	ns	ndicate whe	ther the	
	Equation	No Solution	One Solution	Infinitely Many Solutions	
	7x + 21 = 21				
	12x + 15 = 12x - 15				
	-5x - 25 = 5x + 25				CCSS

R	HS – con	nputation		
	For items 1a – 1e, deterr False.	nine whether each equa	ation is True or	
	1a. $\sqrt{32} = 2^{\frac{5}{2}}$	T True	F False	
	1b. $16^{\frac{3}{2}} = 8^2$	(T) True	F False	
	1c. $4^{\frac{1}{2}} = \sqrt[4]{64}$	(T) True	(F) False	
	1d. $2^6 = \left(\sqrt[3]{16}\right)^6$	(T) True	(F) False	CCSS
	1e. $(\sqrt{64})^{\frac{1}{3}} = 8^{\frac{1}{6}}$	True	(F) False	6633

				агт	5			
			22, p	ait				
			Cost of Grai	in Bins				
					A	dd for		
Diameter (feet)	Height (feet)	Capacity (bushels)	Cost Without Floor (\$)	Concrete Floor (\$)	Steel Floor (\$)	Ventilated Floor (\$)	Fan and Heat (\$)	
	19	10,775	11,525	1,650	1,130	4,250	2,950	
30	24	13,625	16,000	1,775	1,130	4,250	2,950	
	32	18,175	20,100	1,975	1,130	4,250	2,950	
	24	16,475	17,725	2,050	1,320	5,100	3,025	
33	27	18,550	20,050	2,100	1,320	5,100	3,025	
	32	21,975	24,950	2,550	1,320	5,100	3,025	
	24	19,625	21,575	2,575	1,540	6,000	3,075	
36	27	22,075	23,475	2,675	1,540	6,000	3,075	
	32	26,150	26,100	2,775	1,540	6,000	3,075	
	40	32,700	28,925	2,950	1,540	6,000	3,075	
	27	30,050	28,450	3,650	2,065	8,100	3,225	CCS
42	32	35,600	32,525	3,875	2,065	8,100	3,225	
-2	40	44,500	39,650	4,075	2,065	8,100	3,225	
	48	53,425	47,200	4,400	2,065	8,100	3,225	
48	27	39,250	41,150	4,775	2,640	10,450	3,350	
	32	46,500	48,900	5,050	2,640	10,450	3,350	
	40	58,150	55,000	5,300	2,640	10,450	3,350	
	48	69,775	61,650	5,750	2,640	10.450	3,350	

Effort over Ability (Woodward, 2011)

- Students who are motivated to work at math have greater task-persistence and longtem achievement
- Low achieving students have evidence that they don't succeed. Thus they are motivated to show little effort to achieve.
- Use contingent praise based on student effort and graph results of effort to show the effects of effort on achievement. Verbally praise those who work to be engaged.

- Engagement is essential but often difficult
- Students who struggle early learn to be passive or use avoidance behaviors in math class
- I. Create a safe class zone (Allow students multiple ways to ask and answer questions)
- 2. Make math relevant (Socially and Academically)
- 3. Instruct in an interactive and interesting manner

Instruction Matters (NMP, 2008)

Research on students who are low achievers, have difficulties in mathematics, or have learning disabilities related to mathematics tells us that the effective practice includes:

- Explicit methods of instruction available on a regular basis
- Clear problem solving models
- · Carefully orchestrated examples/ sequences of examples.
- Concrete objects to understand abstract representations and notation.
- · Participatory thinking aloud by students and teachers.

Guide student learning • "Decades of research clearly demonstrate that for novices (comprising virtually all students), direct, explicit instruction is more effective and more efficient than partial guidance" (Clark, Kirschner, &

Sweller, 2012, p. 6).

 "..teachers are more effective when they provide explicit guidance accompanied by practice and feedback, not when they require students to discover many aspects of what they must learn" (Clark, Kirschner, & Sweller, 2012, p. 6). Name the components of explicit instruction from: -Multiplying negatives through Khan

http://www.khanacademy.org/math/arithmetic/negat ive-numbers/v/why-a-negative-times-a-negative-isa-positive

-PA DOE on modeling <u>"Teaching Matters"</u> http://video.search.yahoo.com/search/video:_ylt=A 2KLqIDiTzFP4AsARBn7w8QF;_ylu=X3oDMTBn cGdyMzQ0BHNIYwNzZWFyY2gEdnRpZAM-?p=explicit+instruction+education&ei=utf-&&n=21&tnr=21

8 th Grade	Algebra			
The Number System	Seeing Structure in Expressions			
Know that there are numbers that are not rational and approximate them by rational numbers.	Interpret the structure of expressions			
Expressions and Equations	 Write expressions in equivalent forms to solve 			
 Work with radicals and integer exponents. 	problems			
Understand the connections between proportional	Arithmetic with Polynomials and Rational Expressions • Perform arithmetic operations on polynomials • Understand the relationship between zeros and factors of polynomials			
relationships, lines, and linear equations.				
 Analyze and solve linear equations and pairs of simultaneous linear equations. 				
Functions				
Define, evaluate, and compare functions.				
Use functions to model relationships between quantities.	 Use polynomial identities to solve problems 			
Geometry	Rewrite rational expressions			
	Creating Equations			
 Understand congruence and similarity using physical models, transparencies, or geometry software. 	 Create equations that describe numbers or 			
Understand and apply the Pythagorean Theorem.	relationships Reasoning with Equations and Inequalities • Understand solving equations as a process of reasoning and explain the reasoning			
 Solve real-world and mathematical problems involving volume of cylinders, cones and spheres. 				
Statistics and Probability				
 Investigate patterns of association in bivariate data. 	Solve equations and inequalities in one variable			
	Solve systems of equations			
	Represent and solve equations and inequalities			
	graphically			

Why would CRA be effective? (Witzel, Riccomini, & Schneider, 2008)

- Multimodal forms of math acquisition to aid memory and retrieval
- Multiple learning styles are being met to aid relevance and motivation
- Meaningful manipulations of materials allow students to rationalize abstract mathematics
- Procedural accuracy; provides an alternative to algorithm memorization of math rules
- Transportable without concrete materials

Teach each CRA lesson to mastery Model and guide students in their use of manipulative objects and pictorial representations. Teach students step by step gradually introducing mathematical vocabulary. Allow students to name or invent their stepwise procedures within instruction. Move from concrete to representational to abstract learning levels only after students show accuracy without hesitations in manipulations or drawings. Assess each level of learning according to stepwise procedures. Take account of students who created

different procedures.

Personal and the service of the servic

FL scores from the Algebra Success Keys Project

(headed by Dr. Mary Little, PhD, UCF)

- In a FL DOE 2006 call of the critical need to improve student rates of learning where only 4 of 67 districts met AYP in math for students with disabilities, CRA gained much attention for it's potential.
- 5 districts created assessments based on their states benchmarks that mirrored their statewide exams in order to test this model with their teachers
- The results...

Manipulative objects do not teach children, teachers do. The manipulatives are mere tools to reach an outcome, usually an abstract one.

- Organize the sequence of the instructional steps
- Practice math dialogue to match instructional procedures.

Math Interactions

Use language to take students from one level of learning to the next.

- Ways to increase interactions:
 - Allow students to interact frequently with the class materials and concepts
 - Model and encourage level appropriate math vocabulary in class dialogue
 - Use white boards to assess **step by step** process of concept
 - Set up cooperative groups with systematic interaction
 - Use journals to practice student think alouds and conceptualization

© Witzel, 2011

Next Steps Interleaving different types of problems in occasional series of independent practices is superior to only presenting solitary types of problems (Rohrer and Paschel, 2010) Provide plenty of instructional modeling, including video models and worked samples within homework.

http://www.khanacademy.org/

Commit to having students learn

Double Dosing (Nomi & Allensworth, 2011)

- In Chicago, each year about ¹/₄ of students fail their ninth grade algebra course. With 9th grade failure associated with dropout, the district tried something
- They double-blocked algebra to give students 2x the amount of instruction time.
- Most students below the 50th %ile enrolled

Double-dosing outcomes

 Increased class interactivity and engaging pedagogy

Improved test scores but not failure rate

- Students who entered with lower test scores scored increased gain scores more than those who entered the treatment with slightly higher scores.
- Failure rates remained the same
- "Double-dose algebra was least effective for students entering high school with the weakest math abilities" (Nomi & Allensworth, 2011, p. 181)

References

Barler, F.H., Miller, S.P., Crehan, K., Bablart, B., & Porez, T. (2003). Fraction instruction for students with mathematics Stabilizer. Comparing two texticity sequences. Learning Distabilities Research and Practice, 18, 59-111.
Cass, P.L., Cass, D., Smith, H., & Jackson, C. (2003). Effects of manipulative instruction on solving area and perimeter provide and provide students and provide students. *Nature*, 19, 1997.
Gen and Kandon, S., Carlen, B., Backson, C. (2003). Effects of manipulative instruction on solving area and perimeter proved. R. Beckenson, S. Carlen, B., Beckenson, P., Kandon, J., Kandon, J., 2009. Assisting and the students of common structure instruction of RII (in dennessing and discribute). *NICEE 2009*–4,4001. Webington, D.C. Notrood Common for Education Evaluation and Regional Assistance Institute of Education Sciences, U.S. Department of Education Common for Education Evaluation and Regional Assistance Institute of Education Sciences, U.S. Department of Education Common for Education Sciences, Comparing and Assistance and Paratines, J.S. (2004). Assisting analysis and the Science of R. Begesta in Institute of Education Sciences, U.S. Department of Education on Experiment Olderin, 23(2), 1–21.
Haccini, J. & Hayles, C.A. (2000). Effects of a problem solving arrategy on the introductory slighting performance of tescondary students with learning disabilities. *Education and Practice*, 15 (1), 10-21.
Haccini, J. & Hayles, C.A. (2000). Effects of a gradulated mittrational sequence on algebraic subtraction of Integers by secondary students with learning disabilities. *Education and Practice*, 21 (4), 45-489.
National Hathematics Advisory Panel (2008). Fondation for success: The Inter of the Ast-1400.
Mational Mathematics Advisory Panel (2008). Fondation for success: The Inter of the Ast-1400.
Mational Mathematics Advisory Panel (2008). Fondation for success: The Inter of the Internation Mathematics Ast-1400.
Mational Pathematics Advisory

Miller, S. P. & Mercer, C. D. (1993). Using data to learn about concrete-semiconcrete-abstract instruction for students with math disabilities. Learning Disabilities Research and Practice, 8, 89-96.

math instabilities. Learning Diabilities Research and Practice, 8, 99-96. Wirzel, B.S., Alkopp, D. (2007). Dynamic modeling of manipulative instruction. Mathematics Teaching in the Middle School. Wirzel, B.S., Mercer, C. D., B. Miller, M. D. (2003). Tacching algebra to students with learning difficulties: An investigation of an explore instruction model Learning Diabilities: Research and Practice, 8, 19-11-11. Wirzel, B.S. (2005). Using CRAs to reach algebra to students with math difficulties in inclusive settings. Learning Diabilities: A contingionary Junual, 21(3): 544-