

Middle and High School Algebra for Students Struggling in Math

MTSS

1/2 day

Bradley Witzel, Ph.D. Winthrop University witzelb@winthrop.edu Twitter @BradWitzel

```
In a game, exactly six inverted cups stand side by side in a straight line, and each has exactly one ball hidden under it. The cups are numbered consecutively 1 through 6 . Each of the balls is painted a single solid color. The colors of the balls are green, magenta, orange, purpose, red and yellow. The balls have been hidden under the cups in a manner that conforms to the following conditions:
The purple ball must be hidden under a lower-numbered cup than the orange ball The red ball must be hidden under a cup immediately adjacent to the cup under which the magenta ball is hidden.
The green ball must be hidden under cup 5 .
1. Which of the following could be the colors of the balls under the cups, in order from 1 through 6 ?
(A) Green, yellow, magenta, red, purple, orange
(B) Magenta, green, purple, red, orange ,yellow
(C) Magenta, red, purple, yellow, green, orange
(D) Orange, yellow, red, magenta, green, purple
(E) Red, purple, magenta, yellow, green, orange
2.If the magenta ball is under cup 4 , the red ball must be under cup
\(\begin{array}{lllll}\text { (A) } 1 & \text { (B) } 2 & \text { (C) } 3 & \text { (D) } 5 & \text { (E) } 6\end{array}\)
```


Nationally, what do algebra teachers say? (NMP, 2008)

743 algebra teachers in 310 schools nationally responded to a survey on algebra instruction and student learning in 2007.

Findings:

- The teachers generally rated their students' background preparation for Algebra I as weak. The three skill areas in which teachers reported their students have the poorest preparation are rational numbers, word problems, and study habits
- Regarding the best means of preparing students, 578 suggested a greater focus on mastery of elementary mathematical concepts and skills
- Teachers were less excited about how current textbook approaches meet the needs of diverse student populations

More findings from the NSAT

- Use of calculators was quite mixed with 33% saying they never use them and 31% use them frequently (more than once a week)
60\% use physical tools less than once a week and only 9\% use them frequently
- 51% consider "mixed-ability" grouping to be a moderate or serious problem with instruction
- The greatest challenge to teachers was \#I - "working with unmotivated students." This was chosen by 58% of the middle school teachers and 65% of the high school teachers. The next most frequent response was "making mathematics accessible and comprehensible to all my students," selected by 14% of the middle school teachers and 9% of the high school teachers.

For Today

- Reviewing SBAC Algebra questions
- Effort and achievement
- Build from arithmetic and teach the details
- Instructional Review
- Explicit Instruction - CRA
- Provide ample opportunities to learn
$8^{\text {th }}$ grade - radicals and integers

The average distance from Jupiter to the Sun is about 5×10^{8} miles. The average distance from Venus to the Sun is about 7×10^{7} miles.

The average distance from Jupiter to the Sun is about how many times as great as the average distance from Venus to the Sun?
\qquad

$8^{\text {th }}$ grade -radicals and integers

Select all of the expressions that have a value between 0 and 1 .

(A)	$8^{3} \cdot 8^{-12}$
(B)	$\frac{7^{+4}}{7^{-3}}$
(C)	$\left(\frac{1}{3}\right)^{2} \cdot\left(\frac{1}{3}\right)^{\circ}$
(D)	$\frac{(-5)^{\circ}}{(-5)^{01}}$

CCSS

$8^{\text {th }}$ grade - equations and expressions

For each linear equation in this table, indicate whether the equation has no solution, one solution, or infinitely many solutions.

$8^{\text {th }}$ grade - radicals

$8^{\text {th }}$ grade - graphing

$8^{\text {th }}$ grade - graphing

Point A is plotted on the $x y$-coordinate plane below. You must determine the location of point C given the following criteria:

- Point C has integer coordinates.
- The graph of line $\overline{A C}$ is not a function.

Click on the $x y$-coordinate plane below to place a point that could represent point C.

$8^{\text {th }}$ grade - geometry

Right triangle $A B C$ and right triangle $A C D$ overlap as shown

not drawn to scale
What are the values of x and y ?
$x=\square$ degrees $y=\square$ degrees
$8^{\text {th }}$ grade - similarity and congruence

Trianole $A B C$ on this coordinate grrd was created by joining
points $A(3,2), B(4,5)$, and $C(7,3)$ with line segments.
Triangle $A B C$ was reflected over thex x-axis and then reflected
over the y-oxis to form the red trinale
Thangle $A B C$ was
overt the y oxis to form the red thionole, where x, y, and z
represent the lengths of the sides of the red tianole.
$\square \begin{aligned} & \quad \\ & 8_{6}\end{aligned}$

HS - computation

(T)True ©False

Algebra-QI, part I

Part A
A town council plans to build a public parking lot. The outline

CCSS

Algebra-QI, part 2

Write an expresslon the
parking lot. Explain the reasoning you used to find the parking lot.
expresslon.

Part B
The town council has plans to double the area of the parking lot In a few years. They create two plans to do this. The first plan
increases the length of the base of the parking lot by p yards, as
shown in the diagram below.

Write an expression in terms of x to represent the value of p,
in feet. Explain the reasoning you used to find the value of p.
in feet. Explain the reasoning you used to find the value of p.

Algebra - QI, part 3

Part C

The town council's second plan to double the area changes the shape of the parking lot to a rectangle, as shown in the diagram below.

Can the value of z be represented as a polynomial with integer coefficients? Justify your reasoning.

Algebra - Q2, part I

Your Assignment:
In this task you will
Your Assignment:
In this task you will assume the role of consultant for a farmer.
You will analyze the options available to the farmer for handling
You will analyze the options available to the farmer for handiling
the storage of shelled field com (shown in the pictures above). In
the past, the farmer has sold the corn as it was harvested, and
did not store the corn to be sold in the future. The farmer has
increased the number of acres used to grow com, and now is exploring the cost of storing the com until after the harvest is complete and then selling it. You will analyze two storage options available to the farmer for storing the grain that is harvested
. The com can be stored in grain bins constructed on the

Algebra - Q2, part 2

Algebra-Q2, part3

Cost of Grain Bins							
						dat for	
$\begin{aligned} & \text { Diameter } \\ & \text { (foet) } \end{aligned}$	nelight (teet)	Capacity (bushels)	$\begin{aligned} & \text { Cost Without } \\ & \text { Floor } \\ & \text { (} \$ \text {) } \end{aligned}$	$\begin{gathered} \text { Concotere } \\ \text { nois } \\ \text { (is) } \end{gathered}$	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline \text { (o) } \end{array}$		$\begin{gathered} \text { Fan and } \\ \text { Heat } \\ \text { (\$) } \end{gathered}$
30	19	10,775	11,525	1,650	1,130	4,250	2,950
	24	13,625	16,000	1,775	1,130	4,250	2.950
	32	18,175	20,100	1,975	1,130	4.250	2,950
33	24	16,475	17,725	2.050	1,330	5.200	3,025
	27	18,550	20,050	2,100	1,320	5,100	3,025
	32	21,975	24,950	2.550	1,230	5,100	3,025
36	24	19,625	21,575	2.575	1.540	6.000	3.075
	27	22.075	23,475	2.675	2.540	6.000	${ }^{3.075}$
	32	26,150	26,100	2,775	1,540	6,000	3,075
	40	32,700	20,925	2,950	1.340	6,000	3.075
42	27	30,550	28,450	3,650	2.065	8,100	3,225
	32	35,600	3,525	3,875	2005	8,100	3,225
	40	4,500	3, 3 ,50	4,075	2,065	8.100	3,225
	48	5, 3,25	47,200	4,400	2,065	8,100	3.225
${ }^{48}$	27	3,250	41,150	4,775	2.850	10,450	3,350
	32	46,500	48,900	5.050	2.90	10,450	3.350
	40	58,150	55,000	5,300	2.640	20,450	3.350
	48	6,775	6,.,50	5,780	2,600	10,450	3,350

Algebra, Q2, part 5

Part B
When com is harvested, the moisture content varies, but is
typically above the level desired for selling or storing com, so the
corm must be dried. The moisture content is given as a percent
that represents the proportion of the weight of the corn that is
from water. For example, if you had 40 lbs of corn at 25%
moisture content, it would consist of 10 lbs of water and 30 lbs of
dry material. As con dries, the amount of water decreases, but dry material. As corn dries, the amount of water decreases, but
the amount of dry material stays the same, so the percent of
weight from water will decrease.
The final moisture contents for various purposes are as follows:

- 15.5% to sell at market
- 14.0% to store at a rental storage facility
- 13.5% to store in grain bins constructed on the farm

There is a cost for drying corn to 15.5% moisture to be abie to
sell it at market, but there is extra cost to dry it below 15.5%.
This extra cost is a cost of storage since it must be paid only if
the grain is to be stored and not sold at market.

Algebra, Q2, part4

Find the most effident cost of the construction. Se sure to
include the bins (caps are included in the price), orravity spouts, include the bins (caps are incuded in the price), gravity spouts.
and leg elevator.

Algebra, Q2, part 6

Assuming corn is harvested at an initial molsture content of 20%
and y ou use ep gas as fuel for your dryer, use the information in

tables 1 and 2 below to calculate the extra cost per bushel of drying com to a final moisture content of 14% and 13.5%, Justify
your answer mathematically and show all the steps in your your answer mathematically and show all the steps in your
calculation. You can use the regression tool in the spreadsheet calculation. You can use the regression tool in the spreadsheet
provided if necessary. The BTUs required to dry com to a final moisture content of 15.5% and 13.5% are not in the table but can be found using the provided regression tool.

Energy (BTU's) Required to Dry a Bushel of Wet Cor

Final Moisture Content	Initial Moisture Content					
	20%	22%	24%	26%	28%	30%
16%	7,525	8,744	11,596	13,714	14,487	17,086
19,545						
15%	9,579	12,589	15,447	18,241	18,784	21,188
14%	11,635	14,582	17,388	19,994	20,624	22,463
24,768						
13%	13,878	16,774	19,528	22,088	24,486	26,744

Algebra, Q2, part 7

What is different about these questions from previous
Energy Content (BTU's) per Unit of Fuel

Fuel Type	Unit	BTU's per Unit of Fuel
Oill	Gallon	140,000
LP gas	Gallon	92,000
Electricity	kWh	3,414
Natural gas	Cubic foot	1,000

Student Attitude Matters

Effort over Ability (Woodward, 201I)

- Develop an Internal Locus of Control
- Students who are motivated to work at math have greater task-persistence and longtem achievement
- Low achieving students have evidence that they don't succeed. Thus they are motivated to show little effort to achieve.
- Use contingent praise based on student effort and graph results of effort to show the effects of effort on achievement.Verbally praise those who work to be engaged.

Engagement: Involve the students as often as possible

- Engagement is essential but often difficult
- Students who struggle early learn to be passive or use avoidance behaviors in math class
I. Create a safe class zone (Allow students multiple ways to ask and answer questions)

2. Make math relevant (Socially and Academically)
3. Instruct in an interactive and interesting manner

Instruction Matters (NMP, 2008)

Research on students who are low achievers, have difficulties in mathematics, or have learning disabilities related to mathematics tells us that the effective practice includes:

- Explicit methods of instruction available on a regular basis
- Clear problem solving models
- Carefully orchestrated examples/ sequences of examples.
- Concrete objects to understand abstract representations and notation.
- Participatory thinking aloud by students and teachers.

Guide student learning

- "Decades of research clearly demonstrate that for novices (comprising virtually all students), direct, explicit instruction is more effective and more efficient than partial guidance" (Clark, Kirschner, \& Sweller, 2012, p. 6).
- "..teachers are more effective when they provide explicit guidance accompanied by practice and feedback, not when they require students to discover many aspects of what they must learn" (Clark, Kirschner, \& Sweller, 2012, p. 6).

Name the components of explicit instruction from:

-Multiplying negatives through Khan
hetp://www.khanacademy.org/math/arithmetic/negat ive-numbers/v/why-a-negative-times-a-negative-is-a-positive
-PA DOE on modeling "Teaching Matters"
http://video.search.yahoo.com/search/video; ylt=A
2KLqIDiTzFP4AsARBn7w8QF; ylu=X3oDMTBn
cGdyMzQ0BHNIYwNzZWFyY2gEdnRpZAM-
ip=explicit+instruction+education\&ei=utf$8 \& n=218, n r=21$

Modeling:

- Teachers' think aloud

Linear Algebra - determinants
http://www.youtube.com/watch?v=36LFsLC3DG8\&list=
PL9267B3FB749DA276\&index=4\&feature=plcp

Marzock's Left Hands Rule

http://www.bing.com/videos/search?q=hands+on+trigono metry\&view=detail\&mid=5F99EA5C353D0874BEF55F99 EA5C353D0874BEF5\&first=0
Calculus - derivatives
http://www.youtube.com/user/EducatorVids2?v=rqOuT Gjp79E

2012-2013 Project:

Student-createdVideo Modeling

Teach a difficult skill to mastery
2. Present a problem for student to independently solve
3. Video students solving the problem and explaining their reasoning
4. Show the problem solving to others in the same class
5. Use these videos for future classes

What are the potential effects?

Build from Arithmetic and Teach the Details

Concepts vs Procedures:

A Bogus Dichotomy (wu, 1999)

- Reasoning and Algorithms
- In fact, algorithms should show reasoning.
- When math is a series of tricks, then the argument of concepts vs procedures is valid. Without tricks, then math is logical in reason and procedure.
- Be careful what is called a "trick." Many "tricks" are developed from accurate procedures. It is just a few steps are ignored.

Clues and Undos procedures

$$
5 / 6 x+4=8
$$

solve for X

Algebraic - The student describes, analyzes, and generalizes a wide variety of patterns, relations, and functions. (MA.D.I.3)
Operations - selects the appropriate operation to solve problems involving addition, subtraction, multiplication, and division of rational numbers, ratios, proportions, and percents, including the appropriate application of the algebraic order of operations. (MA.A.3.3)

Connect Algebra to Arithmetic:

Build on what they know

- $8 \div 2$

$$
8 \div 3
$$

- $13 \div 4$

Progressions: Make Sense of the Steps

$42 / 5$ This mixed fraction as an improper fraction is $22 / 5$.
Why?
Tricks are not helpful to students with memory problems, think about the concept and purpose to the calculations

Say, "Four and two - fifths" "And says to add"
$4 / 1+2 / 5$ or $20 / 5+2 / 5=22 / 5$.
This is why you multiply the fraction's denominator and then add the numerator.

Simple graphing: $Y=\frac{2 / 3}{} x-2$

Take a closer look: $Y=2 / 3 x-2$

The rise over run is actually $2 / 3$ over I

Progressions

Division of Fractions

- Why is it that when you divide fractions, the answer is larger? Also, why do you invert and multiply?
- $2 / 3$ divided by $1 / 4=2 / 3(4 / 1)=8 / 3$
$\frac{2 / 3(4 / 1)}{1 / 4(4 / 1)}=\frac{8 / 3}{4 / 4}=\frac{8 / 3}{1 / 1}=\frac{8 / 3}{}$

$$
\begin{array}{l|l|l|l|l|l|l|l|l|}
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{array}
$$

Progressions:

Algebra evolves from the basics

Asebra and COS -iust a reminder	
$8^{\text {th }}$ Grade	Algebra
The Number System	Seeing Structure in Expressions
- Know that there are numbers that are not rational, and approximate them by rational numbers.	- Interpret the structure of expressions
Expressions and Equations	-Write expressions in equivalent forms to solve
-Work with radicals and integer exponents.	problems
- Understand the connections between proportional relationships, lines, and linear equations.	Arithmetic with Polynomials and Rational Expressions
- Analyze and solve linear equations and pairs of simultaneous linear equations.	- Perform arithmetic operations on polynomials
Functions	factors of polynomials
- Define, evaluate, and compare functions.	- Use polynomial identities to solve problems
Geometry	- Rewrite rational expressions
- Understand congruence and similarity using physical models, transparencies, or geometry software.	- Create equations that describe numbers or
- Understand and apply the Pythagorean Theorem.	relationships
- Solve real-world and mathematical problems involving volume of cylinders, cones and spheres.	Reasoning with Equations and Inequalities - Understand solving equations as a process of
Statistics and Probability	reasoning and explain the reasoning
- Investigate patterns of association in bivariate data.	- Solve equations and inequalities in one variable
	- Solve systems of equations
	- Represent and solve equations and inequalities graphically
	SWizer zoll

CRA sequence of instruction

CRA approach

- CRA is the Concrete to Representational to Abstract sequence of instruction.
- Three stages of learning
- $C=$ Learning through concrete hands-on manipulative objects
- $R=$ Learning through pictorial forms of the math skill
- A = Learning through work with abstract (Arabic) notation
- www.rtitlc.org

Trigonometric ratios

(Willie Ware and Dee Miller)

Why would CRA be effective?
 (Witzel, Riccomini, \& Schneider, 2008)

- Multimodal forms of math acquisition to aid memory and retrieval
- Multiple learning styles are being met to aid relevance and motivation
- Meaningful manipulations of materials allow students to rationalize abstract mathematics
- Procedural accuracy; provides an alternative to algorithm memorization of math rules
- Transportable without concrete materials

Research Support

- From research studies
- To statewide initiatives
- To individual classrooms

Research Support
 - Statistic

Students with learning difficulties using this model outperformed peers on posttest and follow-up measures ($\mathrm{F}=13.89, \mathrm{p}<0.000$) (Witzel, Mercer, \& Miller, 2003)
Students with a history of high math achievement scores also show benefit on the posttest ($\mathrm{F}=10.37, \mathrm{p}<0.0 \mathrm{I}$) and the follow-up ($\mathrm{F}=6.97$, $\mathrm{p}<0.01$) despite pretest favoring of traditional ($\mathrm{F}=12.18, \mathrm{p}<0.001$) (Witzel, 2005).

- Testimonial

Teachers wanted to stop using their current instructional series and textbooks
One teacher claimed that he would never teach algebra using any other method than through this model

Teach each CRA lesson to mastery

- Model and guide students in their use of manipulative objects and pictorial representations.
- Teach students step by step gradually introducing mathematical vocabulary.Allow students to name or invent their stepwise procedures within instruction.
- Move from concrete to representational to abstract learning levels only after students show accuracy without hesitations in manipulations or drawings.
- Assess each level of learning according to stepwise procedures. Take account of students who created different procedures.

FL scores from the Algebra Success Keys Project

(headed by Dr. Mary Little, PhD, UCF)

- In a FL DOE 2006 call of the critical need to improve student rates of learning where only 4 of 67 districts met AYP in math for students with disabilities, CRA gained much attention for it's potential.
- 5 districts created assessments based on their states benchmarks that mirrored their statewide exams in order to test this model with their teachers
- The results...

Another math director

A third director's pilot looks at FCAT results

Choosing Manipulatives and Preparing for Instruction

Review the abstract problem solving steps and processes before choosing manipulative objects

- Ask yourself:
. Are these manipulatives easy to use?

2. How can these manipulatives be used for concept and process?
3. Can I follow the same abstract steps using these manipulatives?
4. How will the pictorial representation stage appear with these manipulatives?
5. How many similar math skills can be taught using these manipulatives?

Make a change based on results

- Joe McNaughton, math director and National Board Certified teacher, challenged 29 secondary math teachers to make a change with CRA implementation.
- Of 29 teachers to attend, 29 accepted.
- Leading the way were 4 AP Calculus teachers

Next Steps with Visual Representations

- Working with manipulatives Manipulative objects do not teach children, teachers do.The manipulatives are mere tools to reach an outcome, usually an abstract one.
- Organize the sequence of the instructional steps
- Practice math dialogue to match instructional procedures.

Math Interactions

- Use language to take students from one level of learning to the next.
- Ways to increase interactions:

Allow students to interact frequently with the class materials and concepts
Model and encourage level appropriate math vocabulary in class dialogue
Use white boards to assess step by step process of concept
Set up cooperative groups with systematic interaction Use journals to practice student think alouds and conceptualization

Double Dosing (Nomi A Alensworth, 201)

- In Chicago, each year about $1 / 4$ of students fail their ninth grade algebra course. With $9^{\text {th }}$ grade failure associated with dropout, the district tried something
- They double-blocked algebra to give students $2 x$ the amount of instruction time.
- Most students below the $50^{\text {th }} \%$ ile enrolled

Double-dosing outcomes

- Increased class interactivity and engaging pedagogy

Improved test scores but not failure rate

- Students who entered with lower test scores scored increased gain scores more than those who entered the treatment with slightly higher scores.
- Failure rates remained the same
"Double-dose algebra was least effective for students entering high school with the weakest math abilities" (Nomi \& Allensworth, 201 I, p. 18।)

System Overload

- Much resistance may occur with teachers.
- Once a teacher team commits to the change, infuse research-supported instruction one step at a time.

References

Butrer, FM. Miller, S.P.,., Crehan, K., Babbitt, B., \& Pierce,T.T. (2003). Fraction instruction for students with mathematics
disabilities: Comparing two teaching sequences. Learning Disabilities Research and Proctice, 18 , $99-111$. Cass, M. Cates, D., Smith, M. \& Jackson, C. (2003). Effects of manipulative instruction on solving area and perimeter problems by students with learning disabilities. Learning Disabilities Research and Practice, $18,112-120$. Gersten, R., Beckmann, S., Clarke, B., Foegen.A.,Marsh,L.L., Star,J. R., \&Witzel, B. (2009). Assisting students struggling with
 Maccini, P, \& Gagnon.J. C. (2000). Best practices for teaching mathematics to secondary students with special needs. Focus on Exceptional Children, 32(5), $1-21$
Maccini, P. \& Hughes, C.A. (2000). Effects of a problem-solving strategy on the introductory algebra performance of secondary students with learning disabilities. Learning Disabilities Research and Practice, I5 (1), $10-21$.
Maccini, P. \& Ruhl, K. L. (2000). Effects of a graduated instructional sequence on algebraic subtraction of integers by secondary students with learning disabilities. Education and Treatment of Children, 23,465-489.
National Mathematics Advisory Panel. (2008). Foundation for success: The final report of the National Mathematics Advisory Panel.
Miller, S. P. \& Mercer. C. D. (1993). Using data to learn about concrete--semiconcrete-abstract instruction for students with math disabilities. Learning Disabilities Research and Practice, 8, 89-96.
Witzel, B.S., \& Allsopp, D. (2007). Dynamic modeling of manipulative instruction. Mathematics Teaching in the Middle School. Witzel, B. S. Mercer. C. D., \& Miller, M. D. (2003). Teaching algebra to students with learning difficulties: An investigation of an explicit instruction model. Learning Disabilities Research and Practice, 18,121 - 13
Vitzel, B. S. (2005). Using CRA to teach algebra to students with math difficulties in inclusive settings. Learning Disabilities:A
Contemporary Journal, 3 (2), 53 -64.

