Problem Solving Strategies in Mathematics

MTSS Conference

Presented by:

Brad Witzel, Ph.D.
Winthrop University
witzelb@winthrop.edu

Mathematics Problem Solving: Schema-based and Structured Strategies

Bradley S.Witzel, Ph.D.
Associate Professor and Program Coordinator
Winthrop University
witzelb@winthrop.edu
President, Effective Teacher, Inc.
Twitter @BradWitzel
90 min
$4^{\text {th }}$ grade item - area + perimeter

Ms. McCrary wants to make a rabbit pen in a section of her
lawn. Her plan for the rabbit pen indudes the following:

: It will be in the shape of a rectangle.
It will take 24 feet of fence material to make.
: The side will be longer than 1 foot.
$4^{\text {th }}$ grade item - area + perimeter

$4^{\text {th }}$ grade - deciphering a table
A scientist watched a group of squirrels collect acorns. Each squirrel
ate son
acoms.
The table below shows data for three squirrels in the group. The
number of acorns each squirrel stored is missing from the table. Fill
in the data that are missing from the table.
$4^{\text {th }}$ grade item - area + perimeter
Part A
Draw 3 different rectangles that can each represent $M s$.
McCrary's rabbit pen. Be sure to use all 24 feet of fence material
for each pen
Use the grid below. Click the places where you want the corners of your rectangle to be. Draw one rectangle at a time. If you
make a mistake, click on your rectangle to delete it. Continue as
many times as necessary.

Secondary Math Instruction

$6^{\text {th }}$ grade - ratio and proportions

Algebra - Q2, part I

Your Assignment:
In this Assigk you wiil assume the role of consultant for a farmer. You will analyze the options available to the farmer for handling
the storage of shelled field corn (shown in the pictures above). In
the past the farmer has sold the com as it was harvested, and tid not store the com to be sold in the future. The farmer has increased the number of acres used to orow. com, and now is exploring the cost of storing the com until after the harvest is
complete and then selling it. You will analyze two storage option available to the farmer for storing the grain that is harvested. - The com can be stored in grain bins constructed on the

- Therm. corn can be stored in rental storage close to the farm.

the farmer should use.

Algebra - Q2, part 2

Algebra-Q2, part3

Algebra, Q2, part4

All 4 bins must have the same capacity.
The bins must be built to the following spectications
The bins must be built to the following spedications:

- The heinht listed in the table does pot include the height of
the concal

eleveditanaccol from the outer edpe of the bins to the leo
- A orovity spout is placed so that it runs from the top of the

 - The verage cost involved in the construction of the leg
elevator is 15,5000 plus sins for very foot in heloft.: - The gravity spouts cost $\$ 20$ per foot.

Find the most effldient cost of the construction. Be sure to
Indude the bins (caps are included in the price), orovity spouts. Indude the bins (caps are
and leg elevator.

Algebra, Q2, part 6

Assuming corn is harvested at an initial molsture content of 20% and you use LP gas as fuel for your dryer, use the information
tables 1 and 2 below to calculate the extra cost per bushel of drying com to a final moisture content of 14% and 13.5%. Justify
your answer mathematically and show all the steps in your your answer mathematically and show all the steps in your
calculation. You can use the regression tool in the spreadsheet calculation. You can use the regression tool in the spreadsheet
provided if necessary. The BTUs required to dry com to a final moisture content of 15.5% and 13.5% are not in the table but can be found using the provided regression tool.

Energy (BTU's) Required to Dry a Bushel of Wet Corn \begin{tabular}{|c|c|c|c|}
\hline $\begin{array}{c}\text { Moinsture } \\
\text { Content }\end{array}$ \& \& Initial Moisture Content

\cline { 2 - 4 } \&

\hline

\hline Content \& 20% \& 22% \& 24% \& 26% \& 28% \& 30%

\hline 17% \& 5,625 \& 8,744 \& 11,714 \& 14,497 \& 17,00 \& 19,55

\hline

\hline 16% \& 5,625 \& 8,744 \& 11,714 \& 14,487 \& 17,086 \& 19,545

\hline \& 7,522 \& 10,596 \& 13,506 \& 16,241 \& 18,784 \& 21,188

\hline \& 15% \& 1,56 \& 15,4 \&, 11 \& 2,624 \& 22,98

\hline

\hline 16% \& 7,522 \& 10,596 \& 13,506 \& 16,241 \& 18,784

\hline 15% \& 9,579 \& 12,589 \& 15,447 \& 18,118 \& 20,624

\hline 14% \& 11,635 \& 14,582 \& 17,388 \& 19,994 \& 22,463

\hline \& 24,768

\hline \& 13,88 \& 16,7 \&, 58 \& 2,08 \& 24,48

\hline

\hline 13% \& 13,878 \& 16,774 \& 19,528 \& 22,088 \& 24,486 \& 26,744

\hline
\end{tabular}

IES Practice Guide on Math
Problem Solving

Improving Mathematical Problem Solving Practice Guide (Woodword et oll, 2012)

- Recommendation I.Prepare problems and use them in whole-class instruction
- Recommendation 2.Assist students in monitoring and reflecting on the problem-solving process
- Recommendation 3. Teach students how to use visual representations
- Recommendation 4. Expose students to multiple problem-solving strategies
- Recommendation 5. Help students recognize and articulate mathematical concepts and notation

Daily: Use problems that are routine and non-routine

1. Carlos has a cake recipe that calls for $23 / 4$ cups of flour. He wants to make the recipe 3 times. How much flour does he need? This problem is likely routine for a student who has studied and practiced multiplication with mixed numbers.
2. Solve $2 y+15=29$ This problem is likely routine for a student who has studied and practiced solving linear equations with one variable.
3. Two vertices of a right triangle are located at $(0,4)$ and $(0,10)$. The area of the triangle is 12 square units. Find a point that works as the third vertex. This problem is likely routine for a student who has studied and practiced determining the area of triangles and graphing in coordinate planes.
\qquad

Recommendation I

- "Problem solving must be an integral part of each curricular unit, with time allocated for problem-solving activities with the whole class. In this recommendation, the panel provides guidance for thoughtful preparation of problem-solving lessons. Teachers are encouraged to use a variety of problems intentionally and to ensure that students have the language and mathematical content knowledge necessary to solve the problems"(Woodward, et al., 2012, p. I0).

	Recommendation I - "Problem solving must be an integral part of each curricular unit, with time allocated for problem-solving activities with the whole class. In this recommendation, the panel provides guidance for thoughtful preparation of problem-solving lessons. Teachers are encouraged to use a variety of problems intentionally and to ensure that students have the language and mathematical content knowledge necessary to solve the problems"(Woodward, et al., 2012, p. I0).
	© Witzel, 2012

Present non-routine problems

a) There are 20 people in a room. Everybody high-fives with everybody else. How many high-fives occurred?
This problem is likely non-routine for students in beginning algebra.
b) Solve for the variables a through f in the equations below, using the digits from 0 through 5 . Every digit should be used only once. A variable has the same value everywhere it occurs, and no other variable will have that value.
$a+a+a=a^{2} ; b+c=b ; d \times e=d ; a-e=b ; b^{2}=d ; d+e=f$
The problem is likely non-routine for a student who has not solved equations by reasoning about which values can make an equation true.
c) In a leap year, what day and time are exactly in the middle of the year?
This problem is likely non-routine for a student who has not studied problems in which quantities are subdivided into unequal groups.

Clarify Vocabulary and Context of Problems

Example Problem	Vocabulary	Context
In a factory, 54,650 parts were made. When they were tested, 4\% were found to be defective.	Students need to understand the term defective as being the How many parts were working?	What is a factory? Opposite of working and the Symbol \% as percent to correctly solve the problem. context?

Beware textbook definitions: Fraction's example

- A number used to name a part of a group or a whole (math.com)
- A math expression with two numbers placed above and below a division line indicating the number of divisions or portions and the size of each division or portion (toolingu.com)
- A fraction is a part or portion of a whole (kidsorl.com)
- An expression that indicates the quotient of two quantities (freedictionary.com)

Reading Levels of Math Texts in ES

Grade	Textbook publisher	Area of Textbook	Directions readability range	Word Problems readability range
3	Popular textbook program 1	2-digit addition, perpendicular lines, lines, angles, and fractions	${ }^{2}$	$4^{\text {th }}-6^{\text {th }}$
3	Popular textbook program 2			$2^{\text {nd }}-6^{\text {th }}$
5	Popular textbook program 1	solution and least common multiple solution and least common multiple	$8^{\text {th }}-9^{\text {th }}$	$4^{\text {th }}-6^{\text {th }}$
5	Popular textbook program 2		$6^{\text {th }}-7^{\text {th }}$	$3^{\text {rd }}-6^{\text {th }}$

Beware textbook definitions: MS

- Diameter is a line segment that passes through the center of a circle and has endpoints on the circle, or the length of that segment.
- Compensation:When a number in a problem is close to another number that is easier to calculate with, the easier number is used to find the answer. Then the answer is adjusted by adding to it or subtracting from it.

Sample definitions from major math textbooks: Middle School

Polyhedron:A polyhedron is a threedimensional object, or solid figure, with flat surfaces, called faces, that are polygons.

- Upper quartile: the median of the upper half of the data; also called third quartile.

Parallel Lines (Pair of Elves)

Parallel Lines (Pair of Elves)
Lines that are the same distance apart and will never intersect

The Pair of Elves are
The Pair of Elves a apart and will never intersect.
The Pair of Elves are on Parallel Lines

Math reading confusion in MS

$6^{\text {th }}$ grade readability (variables, expression, least common multiple and stem and leaf plot)	Directions grade level range	Word Proble m grade level range	$8^{\text {th }}$ grade readability (coordinate plane and function)	Directions grade level range	Word Problem grade level range
Popular Textbook program 1	$4^{\text {th }}-10^{\text {th }}$	$5^{\text {th}}-7{ }^{\text {th }}$	Popular Textbook program 1	$7^{\text {th- }} 10^{\text {dh }}$	$6^{\text {th}-7{ }^{\text {th }}}$
Popular Textbook program 2	$5^{\text {th }} 11^{\text {th }}$	$5^{\text {th}}$ - ${ }^{\text {th }}$	Popular Textbook program 2	$9^{\text {th }} 10^{\text {th }}$	$10^{\text {hi }-122^{\text {th }}}$
Popular Textbook program 3	$5^{\text {th }}-17^{\text {th }}$	$5^{\mathrm{th}-6} 6^{\text {th }}$	Popular Textbook program 3	$7^{\text {di}}-9^{\text {th }}$	$7^{\text {th}}-12^{\text {dh }}$

Example:
Intercept (sounds like- intersection)

The place where a line, curve or surface crosses an axis

Recommendation 2

- Assist students in monitoring and reflecting on the problem-solving process.
- "...the panel suggests that teachers help students learn to monitor and reflect on their thought process when they solve math problems. While the ultimate goal is for students to monitor and reflect on their own while solving a problem, teachers may need to support students when a new activity or concept is introduced" (p.I7).

Model problem solving prompts

What is the story in this problem about?

- What is the problem asking?
- What do I know about the problem so far? What information is given to me? How can this help me?
- Which information in the problem is relevant?
- In what way is this problem similar to problems I have previously solved?
- What are the various ways I might approach the problem?
- Is my approach working? If I am stuck, is there another way I can think about solving this problem?
- Does the solution make sense? How can I verify the solution?
- Why did these steps work or not work?
-What would I do differently next time?
Note: These are examples of the kinds of questions that a teacher can use as prompts to help students monitor and reflect during the problem-solving process. Select those that are applicable for your students, or formulate new questions to help guide your students.

Math Discourse

Dr. Deborah Ball on math discourse
http://www-
personal.umich.edu/~dball/multimedia/index .html

Recommendation 3

- Teach students how to use visual representations
- Include such visuals as:
- Strip diagrams use rectangles to represent quantities presented in the problem.
Percent bars are strip diagrams in which each rectangle represents a part of 100 in the problem.
Schematic diagrams demonstrate the relative sizes and relationships between quantities in the problem.

Note to Interventionists

"Intervention materials should include opportunities for students to work with visual representations of mathematical ideas and interventionists should be proficient in the use of visual representations of mathematical ideas"
(IES Practice Guide for Assisting Student Struggling with Mathematics, Gersten et al, 2009)

Ratio problem solving (adapeed from Beckman, 2011)
What happens when we mix 3 cups of blue paint with 2 cups of yellow paint?

That was I batch. What if we make more batches?

\# of batches	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
\# cups of blue	$\mathbf{3}$	6	9	12	15	18	21
\# cups of yellow	2	4	6	8	10	12	14
\# cups of green produced	5	10	15	20	25	30	35

What do these paint mixtures have in common? Name the ratio.

Strip diagrams (Gersene etal.2009)
The two problems below are addition and subtraction problems that students may be tempted to solve using an
incorrect operation. In each case, students can draw a simple diagram like the one shown below, record the known quantities (two out of three of A, B, and C), and then use the
diagram to decide whether addition or subtraction is the diagram to decide whether addition or subtraction is the
correct operation to use to determine the unknown quantity

1) Brad has a bottlecap collection. After Madhavi gave Brad 28 more bottlecaps, Brad had 111 bottlecaps. How many bottlecaps did Brad have before Madhavi gave him
more? more?
2) Brad has a bottlecap collection. After Brad gave 28 of his bottlecaps to Madhavi, he had 83 bottlecaps left. How many bottlecaps did Brad have before he gave Madhavi some?

Recommendation 4

- Expose students to multiple problem-solving strategies.
- Approach (Polya, I945)
- Understand the problem
- Devise a plan

Structure Schema-based
Carry out the plan
Reflect

Note to Interventionists: Schema-

 based instructional (SBI) strategies"Interventions should include instruction on solving word problems that is based on common underlying structure"
(IES Practice Guide for Assisting Student Struggling with Mathematics, Gersten et al, 2009)

Level of Evidence: Strong

Routine Problem Types: Group;

Change; Compare Uitendra, 2008.jungiohann, 2010)

Group - two or more smaller groups are grouped to make up a larger group
Change - two or more sequential actions lead to an increase or decrease in total quantity or value
Compare - two items are compared using a common unit or referent

Change Problem (Gersten et al, p.27)

The two problems here are addition and subtraction problems that students may
be tempted to solve using an incorrect opbe tempted to solve using an incorrect op-
eration. In each case, students can draw a simple diagram like the one shown below, record the known quantities (two of three of A, B, and C) and then use the diagram to
decide whether addition or subtraction is the correct operation to use to determine the unknown quantity.

Problem 1. Brad has a bottlecap collection
After Madhavi gave Brad 28 more bottle
caps, Brad had 111 bottlecaps. How many
bottlecaps did Brad have before Madhavi gave him more?
Problem 2. Brad has a bottlecap collection.
After Brad gave 28 of his bottlecaps to Mad havi, he had 83 bottlecaps left. How many Madhavi some?

Name and explain the problem type:

 Group; Change or Comparea) In a relay race, Caroline ran 6 laps. Her partner ran another 6 laps. How many laps did they run altogether?
b) Marcus read 18 books over the summer. Jojo read 6. How many more did Marcus read?
c) The computer lab has 25 computers. Six more new computers were brought in. How many are there now?
d) The midday temperature was 93 degrees. It dropped 27 degrees overnight. What is the new temperature?

Compare problem

Example 2. Compare problems

There are 21 hamsters and 32 kittens at the pet store. How many more kittens are at the pet store than hamsters?

Recommendation 5

- Help students recognize and articulate mathematical concepts and notation.
- Increase verbalization in class, particularly on troublesome content.

Conclusion

- Describe the aspects to SBAC word problems.
- What are the IES problem solving recommendations?
- Describe three main problem types for schema-based problem solving.

Secondary Math Instruction

References

Hannifin, M.J., Hannifin, K. M., Land, S.M., \& Oliver, K. (I997). Grounded practice and the design of
constructivist learning environments. Educational Technology Research and
Development, 45 (3), $101-117$.
Herscovics, N., \& Kieran, C. (1980). Constructing meaning for the concept of equation. Mathematics
Kroesbergen, E. H., VanLLuit, J. E. H., \& Mass, C.J.M. (2004). Effectiveness of explicit and
The Constructivist mathematics instruction or low-achieving students in the Netherlands.
The Elementary School Journal, $104,233-251$.
Moshman, D. (1982). Exogenous, endogenous, and dialectical constructivism. Developmental Review
Rittle-Johnson, B., \& Siegler. R.S., \& Alibali, M.W. (2001). Developing conceptual understanding and $\underset{93,346-362 .}{\substack{\text { rocedural sk }}}$
Woodward, J., Beckmann, S., Driscoll, M., Franke, M., Herzig, P., Jitendra, A., Koedinger, K. R., \& Ogbuehi, P. (2012). Improving mathematical problem solving in grades 4 through 8:A proctice guide (NCEE 2012-4055). Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of
Education. Retrieved from Education. Retrieved from
http://ies.ed.gov/ncee/wwc/publications reviews.aspx\#pubsearch/

