Error Pattern Analyses and Intervention

MTSS Conference

Presented by:
Brad Witzel, Ph.D.
Winthrop University
witzelb@winthrop.edu

Error Pattern Analysis and Intervention

Bradley S. Witzel, Ph.D
Winthrop University
witzelb@winthrop.edu
Twitter @BradWitzel

Overview

- Overview of Error Patterns
- Error Analysis
- Procedures
- Specific Error Patterns
- Case Study-Error Patterns
- Fractions
- Algebra
- Algebra and Beyond
- Next Steps

Error Pattern Analysis

- Knowledge of common math errors and misconceptions provides improved opportunities for lesson planning
- Knowing why a student is completing work incorrectly allows for more efficient and effective intervention

Error Pattern Analyses

- As math problems become more complex, students need to go through a series of steps to solve problems.
- Often an error in any of these steps can cause failure in the final response.
- As a result, it is our responsibility to determine what the error is and whether the error is conceptual, procedural, or memory related.

Grading Example

Steps to solving for unknowns

- $4 x-2 y=8$, solve for y identify the variables
- $4 x-2 y=8$ fadd and subtract addends $-4 \mathrm{x}-4 \mathrm{x} \quad$ on the variable side
- $\underline{0}-2 y=\underline{8}-4 \mathrm{x} \quad$ multiply and divide $\begin{array}{llll}-2 & -2 & -2 & -2 \\ \text { coefficient }\end{array}$
- $1 y=-4+2 x \quad\{$ check reasonableness

Solving for unknowns

4 Separate Steps with computation check

1. Identify the variables
2. Add and subtract addends on the variable side
3. Multiply and divide coefficients
4. Check reasonable
5. Computation accuracy: Multiplication and division
6. Computation accuracy: Addition and subtraction
7. Computation accuracy: Rational Numbers

Grading procedures								
	ID variabl es	Add and subtract	Coefficie nt	Reason ablenes s	Comput e: +; -	Comput e: multi and div	Comput e: Rational	Answer
Ardell	\checkmark							
Michael	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	X	X
Brandon	\checkmark							
Manuel	$\sqrt{ }$	\checkmark	X	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	X
Miguel	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark
Said	\checkmark	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$	\checkmark	\checkmark	$\sqrt{ }$
Tarek	$\sqrt{ }$	\checkmark	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	\checkmark
Jason	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	X	X
Revis	\checkmark	\checkmark	X	\checkmark	\checkmark	X	\checkmark	X

Steps to Error Pattern Analysis
 (adapted from Howell, Fox, Morehead, 1993; KU)

1. Collect at least $3-5$ samples for each type
2. Have student think aloud during the problem solving process
3. Set up stepwise expectations
4. Analyze student responses for error patterns
5. Identify what is correct vs incorrect
6. Confirm the error pattern with the student
7. Set-up a error-specific intervention

Types of Test-Taking Errors

(Nolting, 1997)

1. Misread directions
2. Careless errors
3. Concept errors
4. Application errors
5. Procedural errors

- Sections of a test are missed more than others
- Skipping the last step in problems
- Second-guessing answers
- Pacing (rushing or slowing on a problem)
- Blank answers
- Study errors

Common Math Error Types

Conceptual

Factual
Procedural
Careless

Oftentimes, these error types affect one another

Grading Example

Multiplication Problem procedures

[^0]| Grading procedures | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Multi fact | combo | Carry in | Carry out | $\begin{aligned} & \text { Add } \\ & \text { carry } \end{aligned}$ | Line up add | Add facts | Answer |
| Mike | \checkmark | \checkmark | $\sqrt{ }$ | \checkmark | \checkmark | \checkmark | \checkmark | \checkmark |
| Tarek | \checkmark | X | $\sqrt{ }$ | \checkmark | \checkmark | $\sqrt{ }$ | \checkmark | X |
| Miguel | \checkmark |
| Manuel | $\sqrt{ }$ | \checkmark | X | X | \checkmark | \checkmark | \checkmark | X |
| Jose | \checkmark |
| Pam | \checkmark | \checkmark | \checkmark | $\sqrt{ }$ | \checkmark | X | \checkmark | X |
| Michele | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ | \checkmark | $\sqrt{ }$ | \checkmark | $\sqrt{ }$ | \checkmark |
| Brandon | \checkmark |
| Stan | \checkmark | \checkmark | \checkmark | \checkmark | \checkmark | X | \checkmark | X |
| © Witzel, 2012 | | | | | | | | |

Breakout Activity

Identify the errors for the grade level of one of the below students that you work with:

1. Elementary Grades:
2. Middle School Grades

Ann
3. High School Grades Juan

What is John's Error?	
	$2^{2721} 6^{4250}$
	camsmeat

Interview data / Self-analysis

- When students are performing steps to solving an equation, have them perform think-alouds with you.
- Either write down their reasoning behind each step, or
- Have them write down their reasoning in a journal.
- Perform the interview before and after you implement the new form of instruction to determine if significant improvement is made.

Name the Most Common Answers

(Teacher Candidate study by Ryan \& McCrae, 2005)
I) 0.3×0.24
a) 0.072
b) 0.08
c) 0.72
d) 0.8
e) 7.2

I) 0.3×0.24

Response	Inferred Misconception	Frequency
a) 0.072	CORRECT	36.1%
b) 0.08	0.3 is one-third or the decimal implies division	3.5%
c) 0.72	3×24 and adjust to 2 decimal places	41.1%
d) 0.8	0.3 is one-third or a decimal implies division and adjust to 1 decimal place	2.8%
e) 7.2	$0.3 \times 0.24=3 \times 2.4$	15.3%
OMITTED		1.4%

Remediation based on the error patterns of 0.3×0.24

- How could we teach based on the common error patterns?

X	0.2	0.04
0.3	0.06	0.012
$0.06+0.012=0.072$		

Name the Most Common Answers
(Ryan \& McCrae, 2005)
II) $912+4 / 100$ in decimal form
a) 912.4
b) 912.04
c) 912.004
d) 912.25
e) 912.025

Remediation based on the error patterns of $912+4 / 100$ in decimal form

- How could we teach based on the common error patterns?

Teach place value with see-says and race to 1.

Name the Most Common Answers
(Ryan \& McCrae, 2005)
III) $300.62 \div 100$
a) 30062
b) 30.062
c) 30.62
d) 3.0062
e) 3.62
III) $300.62 \div 100$

Response	Inferred Misconception	Frequency
a) 30062	Move the decimal point 2 places to the right	0%
b) 30.062	Move the decimal point 1 place to the left	6.4%
c) 30.62	Cancel the zero	2.6%
d) 3.0062	CORRECT	68.8%
e) 3.62	Integer-decimal separation or cancel 2 zeros	22.0%
OMITTED		0%

Remediation based on the error patterns of $300.62 \div 100$

- How could we teach based on the common error patterns?

What is he doing correctly?
What is he doing incorrectly?
What would be a good correction?

$+4+1 / 4$	or	$+3+5 / 4$	or	$+17 / 4$
$-2-3 / 4$				
$+2-2 / 4$		$+1-2 / 4$		
$11 / 2$		$11 / 2$		$6 / 4$
$11 / 2$				

Error Patterns with Fractions

Peter is adding with like denominators like this:
$41 / 4-23 / 4=21 / 2$

Number lines

- Show the following on a number line:
- 3 + 2
$-2-5$
-3×2
-3×6
- Identify $1 / 3$
- Identify 1 1/2
$-2(2 / 3)$
$-3 / 4 \div 1 / 2$
Common Algebra Errors
(Dawkins, 2006)
- Where is the error made?

1. $a=b$
2. $a b=a^{2}$
3. $a b-b^{2}=a^{2}-b^{2}$
4. $b(a-b)=(a+b)(a-b)$
5. $b=a+b$
6. $b=2 b$
7. $1=2$
given
multiply both sides by a
subtract b^{2} from both sides
factor both sides
divide both sides by a-b
recall the given
divide both sides by b

How do students tackle problems?

```
3x-6y-9
they might see the immediate possibility that
    13x-26y-39
```

But what happens when computation isn't as straight forward?
$3 x-6 y-9$
x
they might see the immediate possibility that:
$3 x-6 y-9=3-6 y-9=-6 y-6$
1*

Connect Algebra to Arithmetic:
Build on what they know

- $8 \div 2$

- $8 \div 3$

- $13 \div 4$

Algebra error patterns (parenthetical)
Dawkins, 2006

Math Concept	Correct	Incorrect
Square $4 x=(4 x)^{2}$	$(4 x)^{2}=(4)^{2}(x)^{2}=$ $16 x^{2}$	$4 x^{2}$
Square -3	$(-3)^{2}=(-3)(-3)=9$	$-3^{2}=-(3)(3)=-9$
Subtract $4 x-5$ from $x^{2}+3 x-5$	$x^{2}+3 x-5-(4 x-5)=$ $x^{2}+3 x-5-4 x+5=$ $x^{2}-x$	$x^{2}+3 x-5-4 x-5=$ $x^{2}-x-10$
Evaluate $-356 x-$ $2 d x$	$-356 x-2 d x=$ $-3\left(3 x^{2}-2 x\right)+c=$ $-9 x^{2}+6 x+c$	$-356 x-2 d x=$ $-3 \cdot 3 x^{2}-2 x+c=$

Trigonometry error patterns
Dawkins, 2006

Math Concept	Incorrect	Misconception
$\cos (\mathrm{x}+\mathrm{y})$	$\cos (\mathrm{x}+\mathrm{y})=$ $\cos (\mathrm{x})+\cos (\mathrm{y})$	$\cos (\mathrm{x})$ is not multiplication
$\cos ^{-1} \mathrm{x}$	$\cos ^{-1} \mathrm{x}=$	The -1 is not an exponent. Rather, it indicates we have an inverse trig function

This is why we explicitly state that n in $\sin ^{n} x$ is a positive integer. $\sin ^{n} x=(\sin x)^{n}$
© Wizzel, 2012

Algebra expressions and equations

- Much of the confusion of algebra can be averted through a strong math background.
- However, the abstractness of variables and unknowns confuses many students.
- Hands-on instruction should be completed for concept understanding (e.g. graphical calculators) and task development (e.g. Multisensory Algebra)

Arguments for and against algorithms

- Algorithmic instruction receives both admonishment and celebration, often by the same researcher.
- The most current argument against algorithms have been that they lead to blind adherence to stepwise rules without thought.

Improving on algorithms

- Teach the process of the algorithm
- Allow students to interact with the procedures
- Oversee that the algorithm can cover future work that may appear similar to the current skill.
- Make the algorithm easy to remember - ex. PEMDAS; ROYGBIV

Clues and Undo's for procedures

$5 /{ }_{6} \mathrm{X}+4=8$,
solve for X

Algebraic - The student describes, analyzes, and generalizes a wide variety of patterns, relations, and functions. (MA.D.1.3)
Operations - selects the appropriate operation to solve problems involving addition,
subtraction, multiplication, and division of rational numbers, ratios, proportions, and percents, including the appropriate application of the algebraic order of operations. (MA.A.3.3)
© Witzel, 2012

Quadratic Equation example
$3 x^{2}+10 x-8$

1. $(A)(C)=(3)(-8)=-24$
2. Factors of $A C$
-6 \& $4 ;-4$ \& $6 ;-8$ \& $3 ;-3$ \& $8 ;$
-12 \& $2 ;-2 \& 12$
3. Sum or Difference to B

$$
-2+12=10
$$

4. Substitute for B $3 x^{2}-2 x+12 x-8$
5. Solve by groups $x(3 x-2)+4(3 x-2)$ $(x+4)(3 x-2)$
6. AC
$(-8)(3)=-24$
7. Factors that sum to B $-8+3=-5--$-NO $+12+2=+10---$ YES
8. Divide the factors by A $12 / 3=4$ and $-2 / 3$
9. Solve for $X ; x=-4$ and $x=2 / 3$
10. Rewrite factors $(x+4)(3 x-2)$

Mike Diamond, SC math teacher
© Wizeel, 2012

Let's Make Some Mnemonics and Acrostics

Quadratic Slope-Intercept

- Find out if the formula is quadratic
- Recognize and reorder the formula
- Accurately compute to equal the whole number
- Compute the same numbers to equal the coefficient
- Identify the slope and intercept
- Set up the intercept
- The parentheses come next - Evaluate the slope
- Order what's in the parentheses - Rise over run
- Recheck the answer
- Use the dots to make a line
- Need to check your answer

Sample strategies

Identify the variables	Find what you are solving
Set up equations	Ask yourself about the parts
Organize to balance	Set up the numbers
Let equations begin	Tie down the sign
Add variable side of equal sign	
Total other side	Discover the sign Evaluate and check answer
Read the problem Answer or draw or check Write the answer	

What algorithms can you turn into learning strategies?
© Witzel, 2012

Task Analyzing your Curriculum

1. Predict the optimum sequence to reach the outcome your textbook's chapter before you begin teaching
2. Match your task analysis to the textbook
3. Note commonalities and differences
4. Check earlier chapters to see if they cover the differences. Check later chapters to see if they cover the differences.
5. Check supplemental guides to see if they cover the differences
6. Develop additional instruction to complement the current text / curriculum
7. Sequence the instruction as your students need

References

Ashlock, R.B. (2002). Error patterns in computation: Using error patterns to improve instruction (8 $8^{\text {th }}$ ed.). Upper Saddle River, NJ: Merrill.
Dawkins, P. (2006). Common math errors. Available at http://tutorial.math.lamar.edu/terms.aspx.
Kansas University (n.d.). Error pattern analysis. Available at http://specialconnections.ku.edu/~specconn/page/instruction /math/pdf/patternanalysis.pdf.
Ryan, J., \& McCrae, B. (2005). Subject matter knowledge: mathematical error and misconceptions of beginning preservice teachers. Mathematics Teacher Education and Development, 7, 72-89.

[^0]: 7 Separate Steps:

 1. Multiplication Facts: Are the one-digit multiplication processes completed accurately?
 2. Multiplying All Combinations: Are all different kinds of multiplication attempted?
 3. Carry (Inside): Are carries assigned to the proper column?
 4. Carry (Outside): Is the last carry part of the product?
 5. Adding the Carry: Are carried numbers combined with the proper column?
 6. Lining up Addition: Are the intermediate products lined up correctly?
 7. Addition: Is the final addition process carried out properly.
