Error Pattern Analyses and Intervention

MTSS Conference

Presented by: Brad Witzel, Ph.D. Winthrop University witzelb@winthrop.edu

Overview Error Pattern Analysis Overview of Error Patterns and Intervention Error Analysis - Procedures Specific Error Patterns - Case Study-Error Patterns • Fractions Bradley S. Witzel, Ph.D. Algebra Winthrop University witzelb@winthrop.edu · Algebra and Beyond Twitter @BradWitzel - Next Steps © Witzel, 2012 © Witzel, 2012

• As math problems become more complex,

- As math problems become more complex, students need to go through a series of steps to solve problems.
- Often an error in any of these steps can cause failure in the final response.
- As a result, it is our responsibility to determine what the error is and whether the error is conceptual, procedural, or memory related.

broch pattern Analysis chowledge of common math errors and misconceptions provides improved oportunities for lesson planning chowing why a student is completing work incorrectly allows for more efficient and effective intervention

		Gra	ding	; pro	cedı	ires		
	ID variabl es	Add and subtract	Coefficie nt	Reason ablenes s	Comput e: +; -	Comput e: multi and div	Comput e: Rational	Answer
Ardell	1	1	1	\checkmark	1	1	1	√
Michael	1	1	1	1	1	1	X	X
Brandon	1	1	1	1	1	1	1	1
Manuel	1	V	X	1	1	V	V	X
Miguel	1	V	1	1	1	V	V	V
Said	1	\checkmark	1	1	1	1	1	1
Tarek	1	1	1	1	1	1	1	1
Jason	1	\checkmark	1	√	1	\checkmark	X	X
Revis	1	1	X	√	√	X	√	X

Steps to Error Pattern Analysis

(adapted from Howell, Fox, Morehead, 1993; KU)

- 1. Collect at least 3 5 samples for each type
- 2. Have student think aloud during the problem solving process
- 3. Set up stepwise expectations
- 4. Analyze student responses for error patterns
- 5. Identify what is correct vs incorrect
- 6. Confirm the error pattern with the student

© Witzel, 2012

7. Set-up a error-specific intervention

		Gra	ding	pro	cedu	ires		
	Multi fact	combo	Carry in	Carry out	Add carry	Line up add	Add facts	Answer
Mike	1	1	1	1	1	1	V	\checkmark
Tarek	1	X	1	V	1	√	V	X
Miguel	1	√	1	1	1	√	V	\checkmark
Manuel	1	√	X	X	1	√	V	X
Jose	1	V	1	V	1	V	V	1
Pam	1	V	1	V	1	X	V	X
Michele	1	V	1	V	1	V	V	\checkmark
Brandon	1	1	1	V	1	1	V	\checkmark
Stan	1	V	√	\checkmark	1	X	\checkmark	X
				© Witzel, 2013	2			13

Name the Most Common Answers (Teacher Candidate study by Ryan & McCrae, 2005)	
I) 0.3 x 0.24	
a) 0.072	
b) 0.08	
c) 0.72	
d) 0.8	
e) 7.2	
© Witzel, 2012. 1	19

I) 0.3 x 0.24				
Response	Inferred Misconception	Frequency		
a) 0.072	CORRECT	36.1%		
b) 0.08	0.3 is one-third or the decimal implies division	3.5%		
c) 0.72	3x24 and adjust to 2 decimal places	41.1%		
d) 0.8	0.3 is one-third or a decimal implies division and adjust to 1 decimal place	2.8%		
e) 7.2	0.3 x 0.24 = 3 x 2.4	15.3%		
OMITTED		1.4%		
	© Witzel, 2012	20		

Name the Most Common Answers (Ryan & McCrae, 2005)	5
II) 912 + $4/_{100}$ in decimal form	
a) 912.4	
b) 912.04	
c) 912.004	
d) 912.25	
e) 912.025	
© Witzel, 2012	22

Response	Inferred Misconception	Frequency
a) 912.4	Hundredths is first decimal place	3.5%
b) 912.04	CORRECT	76.3%
c) 912.004	Onesths; Tenths, Hundredths	12.2%
d) 912.25	4/100 is ¼ or 100÷4 =1/25=0.25	6.0%
e) 912.025	100÷4=25 and onesths, tenths, and hundredths	1.6%
OMITTED		0.7%

Name the Most Common Answers (Ryan & McCrae, 2005)
III) 300.62 ÷ 100
a) 30062
b) 30.062
c) 30.62
d) 3.0062
e) 3.62
© Witzel, 2012 25

Response	Inferred Misconception	Frequency
a) 30062	Move the decimal point 2 places to the right	0%
b) 30.062	Move the decimal point 1 place to the left	6.4%
c) 30.62	Cancel the zero	2.6%
d) 3.0062	CORRECT	68.8%
e) 3.62	Integer-decimal separation or cancel 2 zeros	22.0%
OMITTED		0%

How do students tackle problems? 3x-6y-93 they might see the immediate possibility that: $1\frac{3x-26y-39}{13} = 1x-2y-3$ But what happens when computation isn't as straight forward? 3x-6y-9x they might see the immediate possibility that: 3x-6y-9 = 3 - 6y - 9 = -6y - 61*

Significant Growth towards Algebra								
Examined 6^{th} and 7^{th} grade preparedness towards Algebra according the Algebra Readiness Test Study is limited (38 students with learning disabilities in mathematics; 2 schools in SC)								
Alg Prep	Data/Prob	Equat	Decim	Expon	Fract	Comp	Graph	Integ
6 th	no	no	no	minimal (ns)	no	minimal (ns)	no	no
7 th	Significant Growth	no	no	minimal (ns)	minimal (ns)	no	no	no
© Witzel, 2012 33						33		

Algebra error patterns (parenthetical)						
Math Concept	Correct	Incorrect				
Square $4x = (4x)^2$	$(4x)^2 = (4)^2(x)^2 = 16x^2$	4x ²				
Square -3	(-3) ² =(-3)(-3) = 9	-3 ² = -(3)(3) = -9				
Subtract 4x-5 from x ² + 3x – 5	$x^{2}+3x-5 - (4x-5) =$ $x^{2}+3x-5-4x+5 =$ $x^{2}-x$	x ² +3x-5-4x-5 = x ² -x-10				
Evaluate -3∫6x - 2 <i>dx</i>	$-3\int 6x - 2dx =$ $-3(3x^2 - 2x) + c =$ $-9x^2 + 6x + c$	$-3\int 6x - 2dx =$ $-3 \cdot 3x^2 - 2x + c =$ $-9x^2 - 2x + c$				
	© Witzel, 2012		34			

Trigonometry error patterns Dawkins, 2006					
Math Concept	Incorrect	Misconception			
cos (x + y)	cos(x + y) = cos(x) + cos(y)	cos(x) is not multiplication			
cos-1x	$\cos^{-1}x = \frac{1}{\cos(x)}$	The -1 is not an exponent. Rather, it indicates we have an inverse trig function			
This is why we explicitly state that n in sin®x is a positive integer. sin®x = / sin x ¹ n					
	© Witzel, 2012				

Arguments for and against algorithms

- Algorithmic instruction receives both admonishment and celebration, often by the same researcher.
- The most current argument against algorithms have been that they lead to blind adherence to stepwise rules without thought.

© Witzel, 2012

Improving on algorithms

- Teach the process of the algorithm
- · Allow students to interact with the procedures
- Oversee that the algorithm can cover future work that may appear similar to the current skill.

© Witzel, 2012

 Make the algorithm easy to remember – ex. PEMDAS; ROYGBIV

Reduce Meaningless Algorithms

- Students with memory concerns often receive remediation in the form of memory-based learning.
- For example, a child who can't learn the multiplication tables starts remediation with timed quizzes and flashcards. While this may be motivational, it is not necessarily instructional.

© Witzel, 2012

Sample strategies Find what you are solving Identify the variables Set up equations Ask yourself about the parts Organize to balance Set up the numbers Let equations begin Tie down the sign Add variable side of equal sign Total other side Discover the sign Evaluate and check answer Read the problem Answer or draw or check Write the answer

What algorithms can you turn into learning strategies?

© Witzel, 2012

Task Analyzing your Curriculum

- 1. Predict the optimum sequence to reach the outcome your textbook's chapter before you begin teaching
- 2. Match your task analysis to the textbook
- 3. Note commonalities and differences
- 4. Check earlier chapters to see if they cover the differences. Check later chapters to see if they cover the differences.
- 5. Check supplemental guides to see if they cover the differences
- 6. Develop additional instruction to complement the current text / curriculum
- 7. Sequence the instruction as your students need

© Witzel, 2012

References

Ashlock, R.B. (2002). Error patterns in computation: Using error patterns to improve instruction (8^{th} ed.). Upper Saddle River, NJ: Merrill.

Dawkins, P. (2006). Common math errors. Available at http://tutorial.math.lamar.edu/terms.aspx.

Kansas University (n.d.). Error pattern analysis. Available at http://specialconnections.ku.edu/~specconn/page/instruction /math/pdf/patternanalysis.pdf.

Ryan, J., & McCrae, B. (2005). Subject matter knowledge: mathematical error and misconceptions of beginning preservice teachers. Mathematics Teacher Education and Development, 7, 72-89.

© Witzel, 2012

.