Algebraic Readiness

MTSS

Conference

Presented by:

Brad Witzel, Ph.D.
Winthrop University
witzelb@winthrop.edu

Algebraic Readiness

Bradley Witzel, Ph.D.
Winthrop University
witzelb@winthrop.edu
803-323-2453
Twitter @BradWitzel
What Math Knowledge is Needed to Solve these Equations?

$2 x+5=18$	$(y-5)(y+2)$	
$-5-5$	$(y)(y)+(y)(2)-(5)(y)-$	
$2 x$	$=13$	$(5)(2)$
$\frac{2 x}{2}=\frac{13}{2}$	$y^{2}+2 y-5 y-10$	
$1 x=61 / 2$	$y^{2}-3 y-10$	

U.S. Math Performance Students with Disabilities

The 2011 National Assessment of Educational Progress (NAEP) reported US math achievement as:

18\% of Grade 4 students scored below the basic level 28% of Grade 8 students scored below the basic level *Grade 12 students scores could not be compared

201I NAEP data revealed that:
10% of $4^{\text {th }}$ grade KS students scored below basic 20% of $8^{\text {th }}$ grade KS students scored below basic (White 14\%; Hispanic 35\%;African-American 41\%)

U.S. Math Performance

201 I NAEP report on students with disabilities
National percent scoring below basic

- 45\% of Grade 4
- 65% of Grade 8

Kansas

- 34% of $4^{\text {th }}$ grade
- 57% of $8^{\text {th }}$ grade

U.S. Math Performance Students with Disabilities

2011 NAEP report on ELL population

Mathematics Performance

Translated to Real World Performance
National percent scoring below basic

- 42% of Grade 4
- 72% of Grade 8

Kansas

- 17% of $4^{\text {th }}$ grade
- 50% of $8^{\text {th }}$ grade
- 78% of adults cannot explain how to compute interest paid on a loan
- 71% cannot calculate miles per gallon
- 58% cannot calculate a 10% tip
- 27% of $8^{\text {th }}$ graders could not correctly shade $\mathrm{I} / 3$ of a rectangle
- 45% could not solve a word problem that required dividing fractions

Mathematics Advisory Panel Final Report, 2008

Growth in MS towards Algebra?

Examined $6^{\text {th }}$ and $7^{\text {th }}$ grade preparedness towards Algebra according the Algebra Readiness Test
Study is limited (38 students with learning disabilities in mathematics; 2 schools in
SC)

Alg Prep	Data/Prob	Equat	Decim	Expon	Fract	Comp	Graph	Integ
$6^{\text {th }}$	no	no	no	minimal (ns)	no	minimal (ns)	no	No
$7^{\text {th }}$	Significant Growth	no	no	minimal (ns)	minimal (ns)	no	no	no

© Witzel, 2012

Teaching beyond grade and course

- Your responsibility for what students learn in your course implies that you are responsible for what they learned before your course.
- Students have been introduced and presented a lot of math information. However, every year teachers blame teachers from the year before for not preparing their students.
- Not only must you know your own course content, you must be aware of previous grade level content and what is expected in the following year.

What we are doing today:

- Learning the necessary foundational skills for algebra success
- Reviewing end of grade / course expectations
- Instructional supports
- Vertical and Horizontal Planning

NMP quotes

- "Few curricula in the United States provide sufficient practice to ensure fast and efficient solving of basic fact combinations and execution of the standard algorithms" (p. 26).
- "...students should be able to proceed successfully at least through the content of Algebra II..." (p. I5)
- "Teachers should recognize that from early childhood through elementary school years, the spatial visualization skills needed for learning geometry have already begun to develop. In contrast to the claims of Piagetian theory, young children appear to possess at least an implicit understanding of basic facts of Euclidean concepts. However formal instruction is necessary to ensure that children build upon this knowledge to learn geometry" (p. 29)

More NMP quotes

- "Differences in teachers account for 12% to 14% of total variability in students' mathematics achievement gains" (p. 35).
- "Calculators should not be used on test items designed to assess computational facility" (p. 61).
- "Publishers should make every effort to produce much shorter and more focused textbooks" (p. xxiv).
- Paraphrased - Students need clear models with think alouds, many examples and opportunities for practice, and frequent feedback. (p. 48)
- More rigorous research for this group of students is needed (p. 49).

A new focus within the CCSSM

I. More Instructional Time: fewer topics covered in greater depth
2. Planned Progressions: instruction is connected within and across grades 3. Proficiency: perform mathematics procedures with speed and accuracy 4.Application: applying math to solve a problem
5. Balanced Learning: achieve fluency and conceptual understanding

What should be covered before formal algebra? (Gerseen, Clare, \&Wired, 2008)

- Fluency with standard algorithms
- Understanding properties

Commutative
Associative
Distributive

- Basic measurement concepts and operations of 2 and 3 dimensional obejcts
- Word problem translations into symbols

Algebra and CCSS

The Number System - Know that there are numbers that are not rational, and approximate them by rational numbers. Expressions and Equations - Work with radicals and integer exponents. - Understand the connections between proportional relationships, lines, and linear equations. - Analyze and solve linear equations and pairs of simultaneous linear equations. Functions - Define, evaluate, and compare functions. - Use functions to model relationships between quantities. Geometry - Understand congruence and similarity using physical models, transparencies, or geometry software. - Understand and apply the Pythagorean Theorem. - Solve real-world and mathematical problems involving volume of cylinders, cones and spheres. Statistics and Probability - Investigate patterns of association in bivariate data.

Seeing Structure in Expressions Seeing Structure in Expressions

- Interpret the structure of expressions - Interpret the structure of expressions -Write exp
Arithmetic with Polynomials and Rational Arithmetic w
- Performions arithmetic operations on polyonials - Perform arithmetic operations on polynomials - Understand the relationship between zeros and
factors of polynomials factors of polynomials
- Use polynomial identities to solve problems
- Rewrite rational expressions

Creating Equations

- Create equations that describe numbers or relationships
Reasoning with Equations and Inequalities
- Understand solving equation - Understand solving equations as a process of reasoning and explain the reasoning
- Solve equations and inequalities in one variable - Solve systems of equations - Represent and solve equations and inequalities graphically

Algebra Teachers (NMP, 2008)

743 algebra teachers in 310 schools nationally responded to a survey on algebra instruction and student learning in 2007.

Findings:

- The teachers generally rated their students' background preparation for Algebra I as weak. The three skill areas in which teachers reported their students have the poorest preparation are rational numbers, word problems, and study habits
- Regarding the best means of preparing students, 578 suggested a greater focus on mastery of elementary mathematical concepts and skills
- Teachers were less excited about how current textbook approaches meet the needs of diverse student populations

$3^{\text {rd }}$ grade item on place value

$4^{\text {th }}$ grade - fractions

Judy conducted an experiment. She put a total of $2 \frac{1}{8}$ cups of water into an empty container. Then, Judy recorded the amount
of water that evaporated from the contaliner each day for four of water that evaporated from the contalner each day for four
days. days.
The line plot below shows the amount of water that evaporated
from the container on each of the four days. from the container on each of the four days.

Evaporated Each Day (cups)

$4^{\text {th }}$ grade - deciphering a table

```
A scientist watched a group of squirrels collect acorns. Each squirrel
acorns.
The table below shows data for three squirrels in the group. The F
number of acorns each squirrel stored is missi
```


$5^{\text {th }}$ grade - volume and measurement

$5^{\text {th }}$ grade - fraction representation

$6^{\text {th }}$ grade - ratio and proportions
unit price of any video game at Roberto's Electronics is the
same as the unit price of a video game in the sale pack at Ben's
Game Word. How much would it cost a customer for 7 video
games at Roberto's Electronics? CCSS
$\$ \square$

6 ${ }^{\text {th }}$ grade - fractions computation

$6^{\text {th }}$ grade - ratio and proportion

In art class, Marvin painted tiles to use for a project. For every 5
tiles he painted blue, he painted 8 tiles green.
Identify the equivalent ratio(s) of blue tiles to green tiles. Select
all that apply.
an apply.
(A) 20:23
(B) $40: 25$
(C) $50: 800$
(D) $60: 96$
(D) $60: 96$
\qquad

$7^{\text {th }}$ grade - fractions and proportions

Roberto is making cakes. The number of cups of flour he uses is
proportional to the number of cakes he makes.
Roberto uses $22 \frac{1}{2}$ cups of flour to make 10 cakes.
Which equation represents the relationship between f, the
number of cups of flour Roberto uses, and c , the number of
cakes he makes?
cakes he makes?
(A) $f=\frac{4}{9} c$
(B) $f-2 \frac{1}{4} c$

CCSS
(C) $f-2 \frac{1}{2} c$
(D) $f=10 c$
$7^{\text {th }}$ grade - computation

$7^{\text {th }}$ grade - geometry
Look at the triangular prism below. Each triangular face of the prism has a base of 3 centimeters (cm) and a height of 4 cm .
The length of the prism is 12 cm

What is the volume, in cm^{3}, of this triangular prism?
cm^{3}

$8^{\text {th }}$ grade - radicals and integers

$8^{\text {th }}$ grade -radicals and integers

The average distance from Jupiter to the Sun is about 5×10^{8} miles. The average distance from Venus to the Sun is about 7×10^{7} miles.

The average distance from Jupiter to the Sun is about how many times as great as the average distance from Venus to the Sun?

$8^{\text {th }}$ grade - radicals

What difficulties will stand in the way of answering these questions?
I)
2)
3)
4)
5)
6)
7)

Do middle school math courses add up to algebra preparation?
Sanders, Riccomini, \& Witzel, 2005

Code	Category	Entering Math Tech 1	Entering Algebra 1
DAPR	Data Analysis, Probability \& Statistics	$\begin{gathered} 39 \\ (46.4 \%) \\ \hline \end{gathered}$	$\begin{gathered} 85 \\ (88.5 \%) \\ \hline \end{gathered}$
DECM	Decimals, their Operations and Applications: Percent	$\begin{gathered} 11 \\ (13.1 \%) \end{gathered}$	$\begin{gathered} 64 \\ (66.7 \%) \end{gathered}$
EQtN	Simple Equations and Operations with Literal Symbols	$\begin{gathered} 35 \\ (41.7 \%) \\ \hline \end{gathered}$	$\begin{gathered} 80 \\ (83.3 \%) \\ \hline \end{gathered}$
EXPS	Exponents and Square Rooss; Scienific Notation	$\begin{gathered} 27 \\ (21.1 \%) \\ \hline \end{gathered}$	$\begin{gathered} 62 \\ (64.6 \%) \\ \hline \end{gathered}$
FRAC	Fractions and their Applications	$\begin{gathered} 3 \\ (3.6 \%) \end{gathered}$	$\begin{gathered} 43 \\ (44.8 \%) \end{gathered}$
gmms	Measurement of Geometrical Objects	$\begin{gathered} 20 \\ (23.8 \%) \end{gathered}$	$\begin{aligned} & \hline 56 \\ & (58.3 \%) \end{aligned}$
GRPH	Graphical Representation	$\begin{gathered} 13 \\ (155.5 \%) \\ \hline \end{gathered}$	$\begin{gathered} 59 \\ (61.5 \%) \\ \hline \end{gathered}$
INTG	Integers, their Operations \& Applications	$\begin{gathered} 27 \\ (32.1 \%) \\ \hline \end{gathered}$	$\begin{gathered} 83 \\ (86.5 \%) \\ \hline \end{gathered}$
	Total Number of Students per course	84	96

What constitutes good instruction

for struggling students

(Gersten, Chard, \& Witzel, 2008)

- Model approaches to solving problems many times - both easy and difficult
- "Think aloud" and teach students to do the same
- Frequent practice
- Independent practice should include discriminatory problems
- Teach word problems and computation
- Use visuals, such as CRA, to represent problems

K-2 Objectives

a) numeral and number
b) magnitude comparisons
c) counting strategies
d) computation
e) fact accuracy and fluency

Themes:
Manipulatives as a level of learning
Assessment throughout

Assessment of Number Sense Components

- Number or Numeral Recognition (Baker et al., 2002; Jordan et al., 2008; Seethaler \& Fuchs, 2010)
- Magnitude Comparisons (Chard et al., 2005; Clarke et al., 2008; Seethaler \& Fuchs, 2010)
- Counting Principles (Clarke et al., 2008; Lembke \& Foegen, 2009; Methe, Hintze, \& Floyd, 2008)
- Fact Fluency (Bryant et al., 2008)
- Word Problems (Locuniak \& Jordan, 2008)

Number Lines

Use number lines physically and pictorially Connect to other representations

Place Value

- "Any concept dependent on number is dependent on place value" (Sharma, 1993).
- Place value is hard to assess because of its involvement in other math processes and skills
- Common Core
- K-Working with numbers II-I9 to gain foundations for place value
- I-Understand a two-digit number represents amounts of tens and ones
- 2-Three-digit numbers recognition
- 3-multi-digit arithmetic

Examples from the CCSS curriculum document

CC.3.NBT. 2 Use place value understanding and properties of operations to perform multi-digit arithmetic. Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction. (A range of algorithms may be used.)

Place Value skills

- $27=2$ tens and 7 ones
- $45=4$ tens and 5 ones
- Should be represented physically and verbally
- Advanced learners should use place value within a calculation exercise.

Extensions of place value

- Use expanded notation and/or arrays with these problems
l) $45+23$

6) $4.37-1.27$
7) $38+14$
8) 6.22-3.45
9) $57-31$
10) 57×29
11) $34-18$
12) 25×14
13) $2.13+3.52$
14) 3.6×2.8

Benefits of place value knowledge

13	$10+3$
-7	-7
	$3+3=6$

$$
\begin{array}{rrr}
341 & 300+40+1 & 200+130+11 \\
-196 & -100-90-6 & -100-90-6 \\
\hline
\end{array}
$$

$$
-196 \quad \frac{-100-90-6}{100+40+5}=145
$$

X	50	3
20	1000	60
8	400	24
$1000+400+60+24=1484$		

Focus on the facts (Parkhurste at 212010., . III)

- "Students who can complete basic math computations problems with rapidity are likely to expend less time and effort on math activities and have less math anxiety"
- "Consequently, those with greater basicfact fluency are more likely to choose to engage in math activities, which further enhance skills."

Common Core

- CC.3.OA. 7 Multiply and divide within 100 . Fluently multiply and divide within 100 , using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div$ $5=8$) or properties of operations. By the end of Grade 3, know from memory all products of one-digit numbers.

Find new ways to reach the students

Horizontal Planning: A grade level's success is a team effort

- Set up grade level team nonnegotiables

- Key math skills need to be understood by all students.
- Use the CCSS to determine which math skills are benchmarks
- Within the CCSS for math, "the standard algorithm" is used four times. What will be your grade level team's standard algorithm?

IES Practice Guide on Fractions
(Siegler et al., 2010)

Recommendation 1. Build on students' informal understanding of sharing and proportionality to develop initial fraction concepts

Recommendation 2. Help students recognize that fractions are numbers and that they expand the number system beyond whole numbers. Use number lines as a central representational tool in teaching this and other fraction concepts from the early grades onward

Recommendation 3. Help students understand why procedures for computations with fractions make sense

Recommendation 4. Develop students' conceptual understanding of strategies for solving ratio, rate, and proportion problems before exposing them to cross-multiplication as a procedure to use to solve such problems

Recommendation 5. Professional development programs should place a high priority on improving teachers understanding of fractions and of how to teach them

Overloading cognition

"Without the ability to retrieve facts directly or automatically, students are likely to experience a high cognitive load as they perform a range of complex tasks" (Woodward, 2006, p. 269).

Vertical Planning: One teacher's
success depends on the previous

teacher's

- The success of each grade level builds upon the next.
- Key math skills need to be understood by all students. To help students grow in math, those key skills can be built across grade levels.
- Within the CCSS for math, "the standard algorithm" is used four time across three grade levels.
- Build progressions to relate each grade's standards to the next.

An example of an algorithmic progression using CCSS

- Second grade "Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal addends."
$4+4+4$ (teaching multiples)
4
8
12
- Fourth grade "Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models."
- $24 \times 76=$?

multiply	70	6
20	1400	120
4	280	24

$1400+120+280+24=1824$

- Fourth grade "Apply and extend previous understandings of multiplication to multiply a fraction by a whole number."
- $2 x^{3 / 4}$

$(2 \times 3) / 4=6 / 4$
- Fifth grade "Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.'
- $7.6 \times 2.4=$?

multiply	7	.6
2	14	1.2
.4	2.8	.24

$14+1.2+2.8+0.24=18.24$

- Fifth grade "Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas."
- $2 I / 3 \times 41 / 2$

multiply	2	$1 / 3$
4	8	$4 / 3$
$1 / 2$	$2 / 2$	$1 / 6$

- Algebra "Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials."
- $(3 x-1)(4 x+5)$

multiply	3 x	-1
4 x	$12 \mathrm{x}^{2}$	-4 x
+5	15 x	-5

$12 x^{2}-4 x+15 x-5=12 x^{2}+11 x-5$

Next Steps

- What areas of math require concentrated effort to achieve in math?
- What should be horizontally planned?
- How do we vertically plan instruction?

Conclusion

"A man is like a fraction whose numerator is what he is and whose denominator is what he thinks of himself. The larger the denominator, the smaller the fraction."
Leo Tolstoy

References B

Butler, F.M., Miller, S. P., Crehan, K., Babbit, B., \& Pierce, T. (2003). Fraction instruction for students with mathematics
disabilities: Comparing two teaching sequences. Learning Disabilities Research \& Proctice, 18(2), $99-111$.
Gagnon, I. G., \& Maccini, P. (2007). Teacher-reported use of empirically validated standards-based instructional
approaches in secondary mathematics. Remedial and Special Education, $28(1), 43-56$. approaches in secondary mathematics. Remedial and Special Education, 28(I), 43-56. dialog begin. Remedial and Special Education, $14(6), 20-23$.
Jordan, L. Miller, M. D., \& Mercer, C. D. (1999). The effects of concrete to semi-concrete to abstract instruction in the acquisition and retention of fraction concepts and skills. Learning Disabilities: A Multidisciplinary Journal, 9, 115 -122. Maccini, P. \& Hughes, C.A. (2000). Effects of a problem-solving strategy on the introductory algebra performance of secondary students with learning disabilities. Learning Disabilities Research \& Practice, $15,10-21$.
Maccini, P., Mulcahy, C.A., \& Wilson, M. G. (2007).A follow-up of mathematics interventions for secondary students with learning disabilities. Learning Disabilities Research \& Practice, 22(1),58-74.
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston,VA:Author
Parkhurst. J., Skinner, C. H., Yaw, J., Poncy, B., Adcock, W., \& Luna, E. (2010). Efficient class-wide remediation: using technology to identify idiosyncratic math facts for additional automaticity drill. International Journal of Behavioral Consultation and Therapy, 6 (2), pl11-123.
Witzel, B. (2005). Using CRA to teach algebra to students with math difficulties in inclusive settings. Learning Disabilities: A Contemporary Journal, 3(2), 49-60.
Witzel, B. S., Mercer, C. D., \& Miller, M. D. (2003). Teaching algebra to students with learning difficulties: An investigation of an explicit instruction model. Leorning Disabilities Research \& Practice, 18(2), 121-131.
Witzel, B. S., \& Riccomini, P.J. (2009). Computation of fractions. Upper Saddle River, Nj: Pearson.

References A

Clements. D. H. (2004). Majio themes snd recemmendations I. D. D. Clements.J. Sarama, \& A. M. DiBiase (Eds), Engaging young children in

 21, 180-206.
Gersten, R., Clarke, B. S. \& J Jordan, N. .C. (2007). Screening for mathematios dififiaties in K-3 students Portsmouth, NH: RMC Research
Jordan. N. C. Hanich. L. B. \& Kaplan, D. (2003). A longitudinal ssudy of mathematial competencies in children with 5 s.
difficulties versus children with comorbid mathematics and reading difficulties. Chidid Development, $74(3)$. $8344-850$.
Long. V. (2009). Adding "place" value to your mathematics instruction. Connect Innovations in K-8 Science, Math, ond Technology, 23(1), 10-12
Mann. A., Moeller, K., Pixner, S., Kaưmann, L. \& Nuerk, H-C. (2011). Attentional strategies in place value integration: A longitudinal study
on two-digit number comparison. Foumal of f Psychology, 219(1), 42-49.
sychology, $219(1), 42-49$
Roche. A. (2010). Decimats: Helping student to make sense of decimal place value. Austrolian Primory Mathematics Classroom, I5(1), 4-10. Saxton. M. \& \& Cakir., K. (2006). . Counting-on, trading and partitioning Effects of training and -prior knowledge on performance on base-10
tasks. Child Develcopment $77(3)$. 767 -785. shidt M. E (1995) Mathematicsintervent
Sharma, M. C. (1993). Place value conceps: How children leernit and how to teach it. Math Noteboek . 101 (182). 1. 23
Thompson, 1 (2009). Place value? Mathematic Teaching, 215, 4-5.
Toppo. G. (2008, September 22). Study: Many 8th-graders can't handile algebra. USA Today.
Witzel, B. S. (in-review). Place value is more than number position.
Witrel. B. S. Riccomini, P.J., \& Larson, M. (in-press). Number sense instruction and intevention within the common core. Thousand Oaks, CA:
Uy, F (2003). The Chinese numeration system and place value. Teoching Chidren Mathematic, 9 (5), 43-47

